The Voltage-Gated Proton Channel Hv1 Has Two Pores, Each Controlled by One Voltage Sensor

نویسندگان

  • Francesco Tombola
  • Maximilian H. Ulbrich
  • Ehud Y. Isacoff
چکیده

In voltage-gated channels, ions flow through a single pore located at the interface between membrane-spanning pore domains from each of four subunits, and the gates of the pore are controlled by four peripheral voltage-sensing domains. In a striking exception, the newly discovered voltage-gated Hv1 proton channels lack a homologous pore domain, leaving the location of the pore unknown. Also unknown are the number of subunits and the mechanism of gating. We find that Hv1 is a dimer and that each subunit contains its own pore and gate, which is controlled by its own voltage sensor. Our experiments show that the cytosolic domain of the channel is necessary and sufficient for dimerization and that the transmembrane part of the channel is functional also when monomerized. The results suggest a mechanism of gating whereby the voltage sensor and gate are one and the same.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hv1 proton channel opening is preceded by a voltage-independent transition.

The voltage sensing domain (VSD) of the voltage-gated proton channel Hv1 mediates a H(+)-selective conductance that is coordinately controlled by the membrane potential (V) and the transmembrane pH gradient (ΔpH). Allosteric control of Hv1 channel opening by ΔpH (V-ΔpH coupling) is manifested by a characteristic shift of approximately 40 mV per ΔpH unit in the activation. To further understand ...

متن کامل

Subunit Interactions during Cooperative Opening of Voltage-Gated Proton Channels

Voltage-gated proton (Hv1) channels are dimers, where each subunit has a separate permeation pathway. However, opening of the two pathways is highly cooperative. It is unclear how Hv1 channels open their permeation pathways, because Hv1 channels lack a classic pore domain. Using voltage-clamp fluorometry, we here detect two conformational changes reported by a fluorophore attached to the voltag...

متن کامل

Voltage-Sensing Domain of Voltage-Gated Proton Channel Hv1 Shares Mechanism of Block with Pore Domains

Voltage-gated sodium, potassium, and calcium channels are made of a pore domain (PD) controlled by four voltage-sensing domains (VSDs). The PD contains the ion permeation pathway and the activation gate located on the intracellular side of the membrane. A large number of small molecules are known to inhibit the PD by acting as open channel blockers. The voltage-gated proton channel Hv1 is made ...

متن کامل

Interrogation of the intersubunit interface of the open Hv1 proton channel with a probe of allosteric coupling

The Hv1 voltage-gated proton channel is a dimeric complex consisting of two voltage-sensing domains (VSDs), each containing a gated proton permeation pathway. Dimerization is controlled by a cytoplasmic coiled-coil domain. The transitions from the closed to the open state in the two VSDs are known to occur cooperatively; however, the underlying mechanism is poorly understood. Intersubunit inter...

متن کامل

Molecular mechanism of Zn2+ inhibition of a voltage-gated proton channel.

Voltage-gated proton (Hv1) channels are involved in many physiological processes, such as pH homeostasis and the innate immune response. Zn2+ is an important physiological inhibitor of Hv1. Sperm cells are quiescent in the male reproductive system due to Zn2+ inhibition of Hv1 channels, but become active once introduced into the low-Zn2+-concentration environment of the female reproductive trac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2008